If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-24x-32=0
a = 50; b = -24; c = -32;
Δ = b2-4ac
Δ = -242-4·50·(-32)
Δ = 6976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6976}=\sqrt{64*109}=\sqrt{64}*\sqrt{109}=8\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{109}}{2*50}=\frac{24-8\sqrt{109}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{109}}{2*50}=\frac{24+8\sqrt{109}}{100} $
| 6x+8=218 | | 10(4/7)=3/7w | | 129=3(-5+6n) | | 2v+20=68 | | 4(3x+7)=-31+23 | | 2x-5-63=98-30 | | 7x+1731=x | | -7(n-4)=-105 | | x*0.15=36 | | (-1+x)/8=-1 | | t+1.8=3.6 | | (r-2)/2=2 | | -4x+6=-54 | | 8-x=15÷5 | | −4x+6=−54 | | 19-14x=-1x+6 | | 1/5(2x-1)=7x-2 | | -10n+3=63 | | b/2-6=-6 | | d—1.6=5 | | -4m-5=7 | | 9(2n-(1/3))-4=101 | | 77=2(13-z) | | 361.90=220x+0.66 | | 20/120=15/x | | −4m−5=7A) | | 8h-(-17)=-97 | | -2(4-2x)+3x=2x-2(5-x)-6 | | -80=10-10p | | 11m+13=m=23 | | 15/x=20/120 | | -2-5n=-37 |